import pandas as pd
url = 'https://raw.githubusercontent.com/dm-fedorov/pandas_basic/master/data/football.csv'
df = pd.read_csv(url)
df.head()| Unnamed: 0 | Name | Age | Nationality | Club | Value | Wage | Position | Crossing | Finishing | ... | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | L. Messi | 31 | Argentina | FC Barcelona | 110500000 | 565000 | RF | 84 | 95 | ... | 75 | 96 | 33 | 28 | 26 | 6 | 11 | 15 | 14 | 8 |
| 1 | 1 | Cristiano Ronaldo | 33 | Portugal | Juventus | 77000000 | 405000 | ST | 84 | 94 | ... | 85 | 95 | 28 | 31 | 23 | 7 | 11 | 15 | 14 | 11 |
| 2 | 2 | Neymar Jr | 26 | Brazil | Paris Saint-Germain | 118500000 | 290000 | LW | 79 | 87 | ... | 81 | 94 | 27 | 24 | 33 | 9 | 9 | 15 | 15 | 11 |
| 3 | 3 | De Gea | 27 | Spain | Manchester United | 72000000 | 260000 | GK | 17 | 13 | ... | 40 | 68 | 15 | 21 | 13 | 90 | 85 | 87 | 88 | 94 |
| 4 | 4 | K. De Bruyne | 27 | Belgium | Manchester City | 102000000 | 355000 | RCM | 93 | 82 | ... | 79 | 88 | 68 | 58 | 51 | 15 | 13 | 5 | 10 | 13 |
5 rows × 42 columns